Pack & Logistic Corner:

"Impresoras 3D y su impacto en la cadena de suministro"

23 de Abril 2015 Barcelona

RMS Rapid Manufacturing Systems SL.

(EOS GmbH Distributor for Spain and Portugal)

Victor Paluzíe Avila

Consultor Industrial en Additive Manufacturing PDG IESE

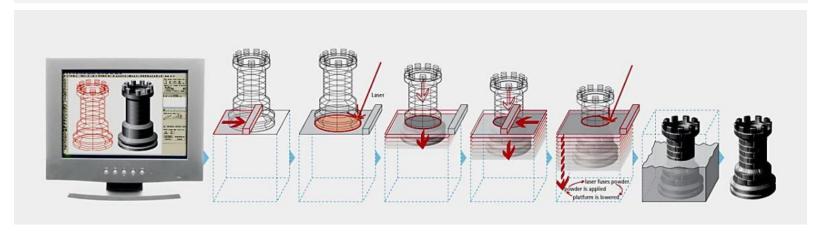
- Qué es el ADDITIVE MANUFACTURING (AM) Y SUS TECNOLOGÍAS : Técnicas de Prototipado, y técnicas Fabricación Directa (Powder Bed Fusion).
- DEFINICIÓN DEL PROCESO (POWDER BED FUSION): Ventajas, y desafíos en términos de re-pensar ciertos procesos, y re-diseño de piezas y conjunto s de componentes.
- MERCADO: (Gartner Hype cycle) CONSUMER 3d Printers and Enterprise 3D Printing. ENTERPRISE 3D Printing: ACTORES: INNOVACION Y ELEMENTOS CLAVE DEL TRIANGULO
- REFLEXIONES sobre su impacto en la Cadena de Suministro.

ADDITIVE MANUFACTURING (AM): TECNICAS DE PROTOTIPADO, VS. TECNICAS DE FABRICACION DIRECTA (Powder Bed Fusion).

PROTOTIPADO:

FDM (fused deposition modelling), base de la mayoría de impresoras 3D que han surgido últimamente en el mercado domestico; **MATERIAL JETTING** (inyectoras de resina fotosensible); **BINDER JETTING** (inyección de aglutinante sobre material); **ESTEREOLITOGRAFIA**, (Laser sobre resina en Cuba);**LOM** (laminated object manufacturing), Y Otras. ..

FABRICACION DIRECTA:


POWDER BED FUSION (American Society for Testing and Materials (ASTM).

PBF: Fusión de forma selectiva secciones de un lecho de polvo, sobre polímeros o metales, para producir piezas finales.

METAL: Acción de láser di-recto sobre metal (Direct Metal Laser sintering - DMLS o SLM), o por haz de electrones , EBM (Electron Beam Melting)

• DEFINICIÓN DEL PROCESO (POWDER BED FUSION): Ventajas, y desafíos en términos de re-pensar ciertos procesos, y re-diseño de piezas y conjuntos de componentes.

Las piezas son producidas mediante la aportación de capas de material en polvo y la exposición a un laser

• DEFINICIÓN DEL PROCESO (POWDER BED FUSION): Ventajas, y desafíos en términos de re-pensar ciertos procesos, y re-diseño de piezas y conjuntos de componentes.

La libertad de diseño.

Incremento de la complejidad del objeto sin que por ello se incrementen los costes de fabricación.

El AM permite la reducción de peso (diseños ligeros).

Integración de piezas, reduciendo los requisitos de ensamblaje mediante la consolidación de piezas en un solo componente

Source: Morris Technologies

Source: Evo Magazine and EADS IW Filton

Source: EOS

Source: WITHIN

La tecnología y sus aplicaciones

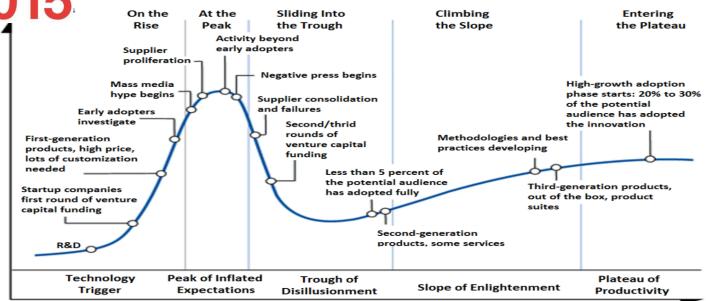
Aeronáutico: En motores a reacción, inferiores y UAV.

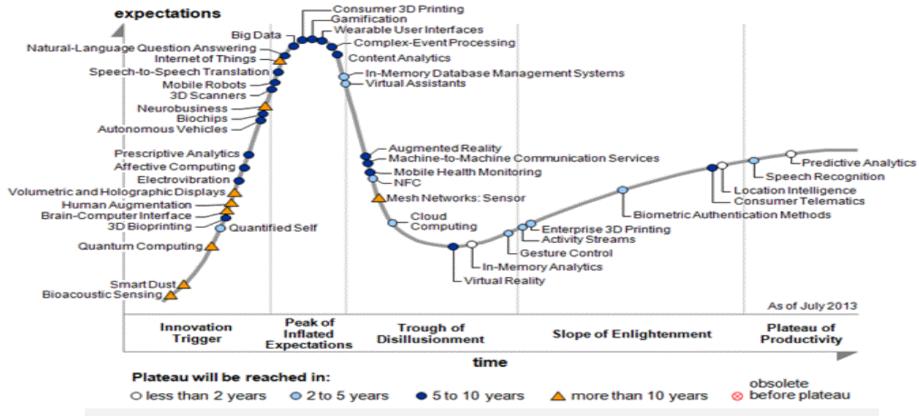
Medico: Aplicaciones dentales, dispositivos ortopédicos e implantes, instrumentos quirúrgicos y dispositivos médicos.

Automoción: Componentes ligeros y complejos a través de la libertad de diseño, piezas individualizadas que cumplen las necesidades y requerimientos del diente.

Industria: "Grippers" para Robótica, Utillaje y Maquinaria de uso especial:

Molde: Diseño inteligente de los canales de refrigeración. Aporta reducción del tiempo de ciclo, mayor rendimiento y reducción de la tasa de rechazos.


"Lyfe Style": Calzado, web y "gadgets", modelado arquitectónico, diseño de inferiores, moda, accesorios y joyería.



MARKET: (Gartner Hype cycle) Consumer VS. Enterprise 3D Printing

- <u>Technology Trigger (Lanzamiento):</u> una presentación del producto o cualquier otro evento genera interés y presencia en los medios.
- <u>Peak of Inflated Expectations (Pico de expectativas sobredimensionadas)</u>: el impacto en los medios genera normalmente un entusiasmo y expectativas poco realistas. Es posible que algunas experiencias pioneras se lleven a cabo con éxito, pero habitualmente hay más fracasos
- •<u>Trough of Disillusionment (Abismo de desilusión)</u>: Las tecnologías entran en el abismo de desilusión porque no se cumplen las expectativas. Estas tecnologías dejan de estar de moda y en consecuencia, por lo general la prensa abandona el tema
- •<u>Slope of Enlightenment (Rampa de consolidación)</u>: Aunque la prensa haya dejado de cubrir la tecnología, algunas empresas siguen, a través de la "pendiente de la iluminación", experimentando para entender los beneficios que puede proporcionar la aplicación práctica de la tecnología
- •<u>Plateau of Productivity (Meseta de productividad)</u>: Una tecnología llega a la "meseta de productividad", cuando sus beneficios están ampliamente demostrados y aceptados. La tecnología se vuelve cada vez más estable y evoluciona en segunda y tercera generación. La altura final de la meseta varía en función de si la tecnología es ampliamente aplicable y sólo beneficia a un nicho de mercado.

Enterprise 3D Printing ya ha alcanzado la Rampa de consolidación y se espera llegar a la meseta de la productividad en 2-5 años.

Enterprise 3D Printing está especialmente empujado por los siguientes mercados: Molde, Aeroespacial, Medico (y Dental).

ENTERPRISE 3D Printing: ACTORES: **INNOVACION** Y ELEMENTOS CLAVE DEL **TRIANGULO**

$$I + D + i \quad (R\&D + I)$$

La "i" se merece el mismo respeto y consideración como el "I + D".

INNOVACION:

La "i", por definición, es la explotación exitosa de nuevos conocimientos (I+D) o de nuevas ideas.

Sin la "i", el I + D, tanto publico como privado, se empieza a perder su conexión con la prosperidad de la empresa u organización que financia la misma.

ENTERPRISE 3D Printing: ACTORES: **INNOVACION** Y ELEMENTOS CLAVE DEL TRIANGULO

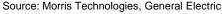
Obstáculos a superar

- Propiedades Mecánicas Trabajos
- Precisión Dimensional • Varios
- Calidad superficial
- Densidad

Consistencia del Proceso

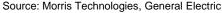
- Calidad Pieza Plataforma
 - Construcción
 - continuos
 - sistemas
 - Varios proveedores

- Automation
- Quality assurance
- Easy-to-Service
- Productivity / reduced costper-part


General Electric Aviation: Difusores en SLM (DMLS)

- 19 inyectores de combustible para ser instalados en todos los motores de CFM LEAP (más de 4.500 vendidos)
- 100.000 piezas de fabricación aditiva serán fabricados por GE en el 2020
- Reducción potencial de peso de 453 Kg de un solo motor de avión mediante fabricación aditiva

David Joyce presidente y CEO



General Electric Aviation: Difusores en SLM (DMLS)

- Objetivo: mejora de la eficiencia de combustible en los motores a reacción
 - Integración funcional
 - Canales de combustible integrados
- Beneficios
 - Diseño complejo construido como una sola pieza
 - Reducción del tiempo de creación de 6 a 2 semanas
- Coste < 50%
- Reducción de peso- < 40%
- Solidez incrementada
 – no hay juntas de soldadura

Ejemplo de proceso y costes de Fabricación: Intercambiador de Calor

- Material: AluminumAlSi10Mg
- Cantidad: 6 piezas en la plataforma construcción
- Espesor de capa: 90µm
- Velocidad de construcción: approx. 105 cm3/h
- Temperatura de la plataforma:
 200°C
- Inert Gas: N2

72 h 41 min o 12 h 7 min por pieza Coste del Lote 4.932 € Coste por Pieza 822 €

Costes de Fabricación: Hebilla en Titanio, para Avión de pasajeros

Peso: 70 gramos (55% menos que en acero con diseño convencional).

Ahorro de Millones de EUR en combustible si tenemos en cuenta el ciclo de vida del avión.

Source: 3T RPD Ltd/The SAVING Project

Buscamos un equilibrio triangular, equidistante e interdependiente entre el sistema, el proceso y los materiales. Ello permite incrementar la solidez del proceso, la industrialización (automatización, control de calidad, facilidad de operar y productividad) y la producción de piezas de alta calidad susceptibles de ser certificadas en sectores de alto valor añadido como el aeroespacial, el medico o la industria de altos requerimientos de calidad.

Dave Dietrich, Phd, materials process and physics engineer expert of additive manufacturing field for the Boeing Research and Technology Division:

"Certification is more valuable than the part itself."

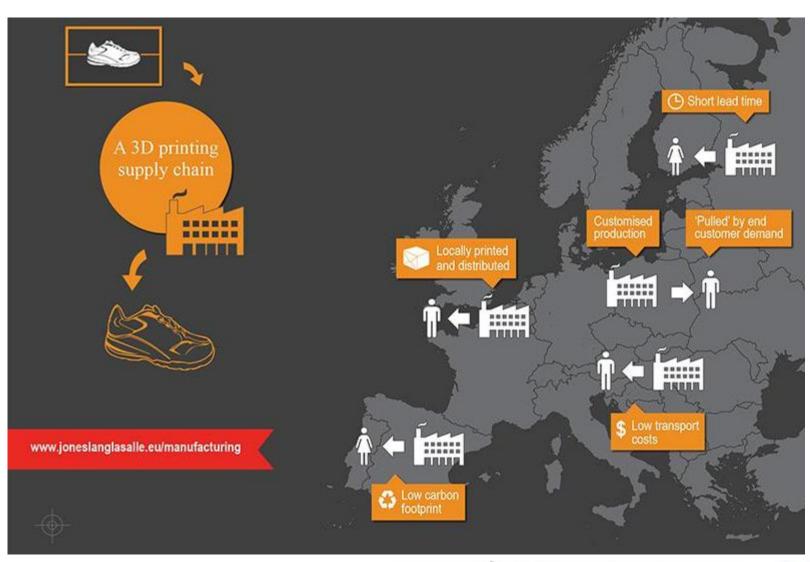
Modelo de prótesis

- Material: Poliamida 12
- Totalmente funcional
- Duración del proceso de fabricación: aprox. 12h

Jannis Breuninger

Project partner:

Fraunhofer


Institut Produktionstechnik und Automatisierung

- ✓ Eliminación de las inversiones de capital (moldes, fundición y máquina herramienta): Reducción de tiempos de espera y costes más bajos.
- ✓ Simplificación en la cadena de suministro: menor número de piezas y producción localizada.
- ✓ Impacto de "Print on demand" en inventarios y en logística: Ya no es necesario tener el producto estocado en almacén.
- ✓ Elimina la necesidad de grandes instalaciones y de mano de obra barata, recortando al menos a la mitad la cadena de suministro.
- ✓ Elementos de elevada complejidad: elementos huecos fabricados por piezas y posteriormente ensamblados.
- Simplificación de la Cadena de Suministro; Nuevas eficiencias al sistema: costes de distribución, montaje y manipulación, y al mismo tiempo que se reducen rechazos, y maximizando la personalización y mejorando los tiempos de montaje.

IMPRESORAS 3D Y SU IMPACTO EN LA CADENA DE SUMINISTRO

Source: Jones Lang La Salle

LA PRIMERA CADENA DE SUMINISTRO DE IMPRESIÓN 3D REAL EN EL MUNDO CON RELEVANCIA INDUSTRIAL

- ✓ GE Aviation's Additive Development Center, (ADC):

 Desarrollo de nuevas tecnologías, técnicas y diseños que
 permitirán avances en el trabajo en fabricación aditiva:

 Su misión es innovar realmente desde el lado del I +D;
 ayudar a crear mejores piezas, mas robustas, y mejor
 acabadas.
- ✓ **GE Aviation GE Additive Lean Lab (ALL)**: Su misión es tomar las piezas diseñadas por ADC y averiguar cómo se puede intensificar y hacer el proceso lo más eficiente posible para producirlas.
- ✓ **GE Centro de Fabricación Aditiva**: Donde serán enviados para ser impresas y expedidas los ficheros (ADC) con la receta (ALL)

CONCLUSIÓN

- ✓ Cadena de suministro infra desarrollada.
- ✓ Ley fundamental de la oferta y la demanda: hasta ahora nadie ha necesitado un plan logístico para una impresión 3D de 40.000 piezas de algo,
- ✓ Un auténtico maremoto: Aumento exponencial con la llegada de nuevas piezas y competidores (Boeing y Pratt Whitney).

Source: Jones Lang La Salle

MUCHAS GRACIAS POR SU ATENCIÓN!!!

Rapid Manufacturing Systems SL
Victor Paluzíe Avila
Director
PDG IESE Business School
Tel Móvil: +34 639 36 08 02
vpaluzie@rmsiberia.com

EOS GmbH Distributor for Spain and Portugal

