New sustainable Portfolio concept for Body Shop and Paint Shop

Humbert Vidal Business Development Manager Europe Eurocar, October 2014 humbert.vidal@henkel.com

+49 151 6801 0649

+34 629 718 354

- 1. Trends in the Automotive Industry
- 2. Adhesives and Sealants
- 3. Composites integration on the Car manufacturing concept
- 4. Conclusions

"To achieve more with less"

Automotive Mega Trends

Fuel Efficiency

Weight Reduction

Alternative Powertrain

Sustainability

Modularization

New Battery Technologies

Lightweight

Sustainability

3

Bonding, Sealing and Coating on Car Bodies

From market trends to development drivers

Henkel Functional Solutions - Innovation Drivers -

Lightweight

- Low density adhesives, sealants and coatings
- Function integration
- Higher efficiency: more with less

Sustainability

- Shift from crude oil based to natural gas based raw materials
- Renewable raw materials
- Low emission & low VOC
- Improved H&S profiles
- Systems for lower bake

5 Innovation Drivers

Requirements / Challenge for automotive OEM lines

Design:

Difficult shapes, more transparent areas

Substrates:

- Use of New Material and substrates.(Al, Mg,..)
- Composites.
- Increased "Mix" of substrates
- Diverse source of metals / Oils

Cost:

- Consumptions
- Energy, maintenance cost.
- Low investment

Manufacturing Process:

- Flexibility/ multi OEM
- Globalization.
- Robustness

Safety, Health and Environment:

- VOC Reduction.
- Reduction of operator exposure
- Reach

5

Contribution to reduced carbon footprint (raw materials, energy, weight, CO₂ emissions)

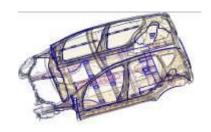
No compromise in technical performance

Easy process integration into automotive production lines

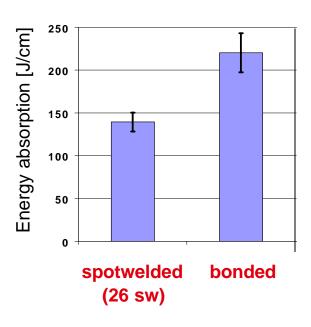
Easy to adapt to new future paint systems and bake conditions

1. Trends in the Automotive Industry

- 2. Adhesives and Sealants
- 3. Composites integration on the Car manufacturing concept
- 4. Conclusions

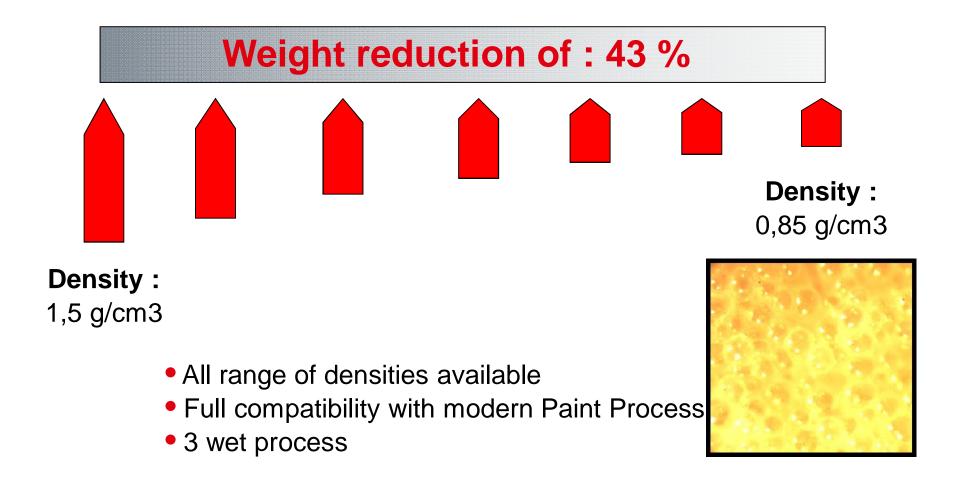


Structural Bonding in Automotive Industry


Light weight: multisubstrates high performing steels and alloids

Teroson EP 4552

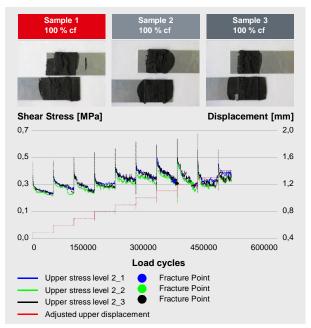
Crash simulation using box beams

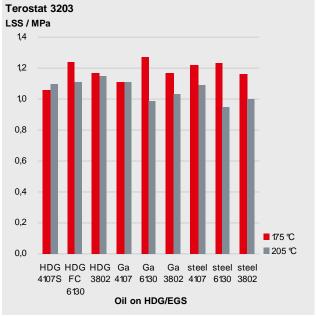

Accepted benefits of structural bonding

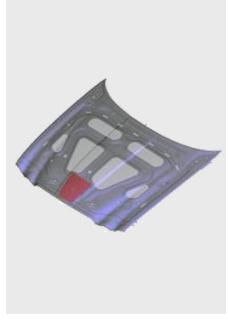
- Improved stiffness of car body assemblies
- Up to 25 % increase of energy absoprtion in the metal structures
- Increased fatigue durability

Paint Shop Sealing in Automotive Industry

Light weight: low density




Sustainable Body Shop and Paint Shop Solutions


High performance antiflutter adhesives

Screening greener raw materials with potential technical benefits

- better adhesion on CRS after overbaking at higher temperatures
- higher resistance against flammability in spot weld applications (excess material areas)
- increased fatigue resistance

Sustainability and Lightweight

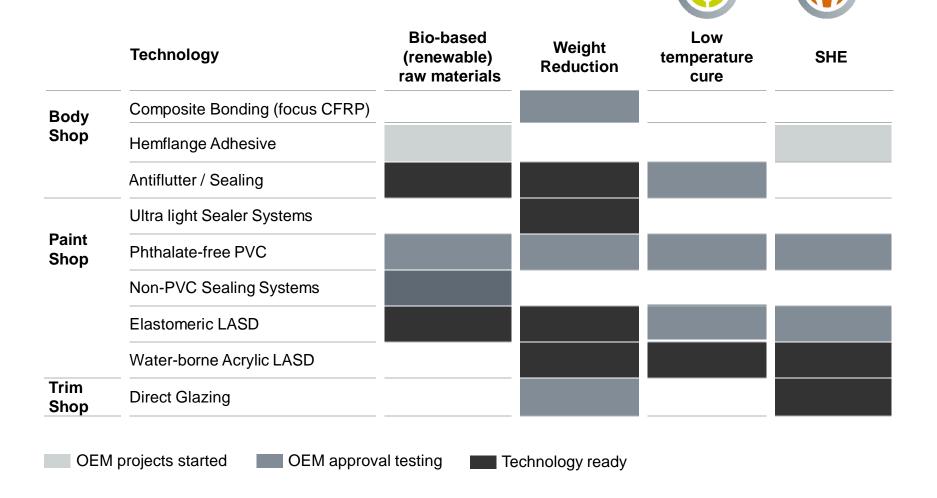
LASD with high efficiency – with renewable oils

Humbert Vidal

Key Criteria for LASD Application

Weight reduction: 20 - 25 %

(vs. melt pads – based on same acoustic performance)


- **Automatic application**
- **Reduced shop complexity**
 - **Technology carry over**

Sustainability Roadmap Body and Paint Shop

Overall technology overview

1. Trends in the Automotive Industry

- 2. Adhesives and Sealants
- 3. Composites integration on the Car manufacturing concept
- 4. Conclusions

Integration of composites

Knowledge needs

Engineerin g, Design & **Simulation**

- **Joining method selection** Adhesive bonding is the favorable method since fiber-matrix system stays unaffected
- **Joint design & FE analysis** for prediction of probable points of failure and failure modes

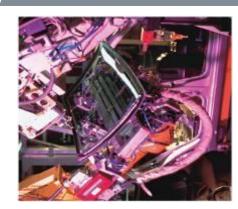
Process Conditions & Substrate **Properties**

- **Thermal sensitivity of composites** prevents standard oven processes & drives bonding processes into the assembly line
- **>** Surface preparation for composite part integration is a process challenge due to remaining mold release chemicals

Adhesive Design & Selection


- > Stiffness of composites in combination with larger bondline thicknesses change mechanical requirements for the respective adhesive systems
- **Multimaterial design concepts** need to consider different thermal expansion properties of substrates

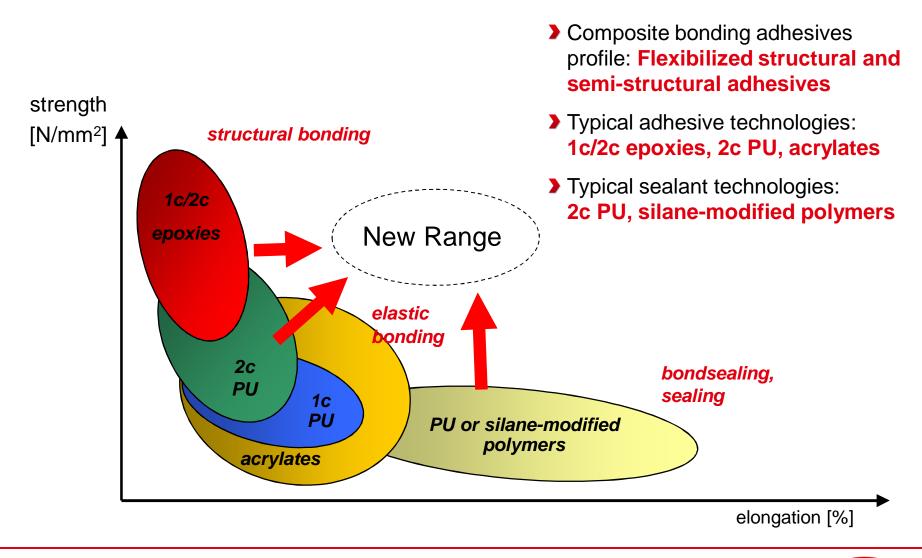
Integration of Composites into Automotive Processes


Considerations for Process Conditions

Body & Paint Shop

- **▶** Composite Body
- Composite & adhesives: High requirements on termal resistance
- **➤ Susbtrate Mix:** Metal-CFRP
- ▶ Adhesives: 1c/2c Epoxy

Trim Shop



- ➤ Modules, Roof, Tailgate, Chassis
- Composite & adhesives:
 Medium thermal resistance
- > Focus on: Cycle time
- Adhesives: 2c Epoxy/PU, 1c PU

Repair

Integration of composites

Adhesive technologies - mechanical property profile

Bonding solutions for modern plastic assemblies

Broad technology portfolio

Adhesive	Curing time [min]	System / Curing temperature	Application	Shear Strength [MPa]	Elongation [%]
Teroson EP 5055	240	2P Epoxy / RT	Structural bonding	18-22	3
Teroson PU 6700 DME	120	2P PUR / RT	Structural bonding	13	< 10
Loctite 3038	60	2P Acrylate / RT	Polyolefin bonding, GFR-PP bonding	10	25
Teroson PU 1510	1	1P PUR /> 85 °C	Structural bonding, Composite bonding	10-14	100-150
Teroson PU 1103	2	1P PUR /> 95 °C	Flange sealing	4	200
Teroson MS 9399	90 - 180	2P Silane-MP / RT	Elastic bonding	2	150

- 1. Trends in the Automotive Industry
- 2. Adhesives and Sealants
- 3. Composites integration on the Car manufacturing concept
- 4. Conclusions

Conclusions

- Market moving in a constant evolution looking for a much more efficient design and manufacturing targets
- Dynamic portfolio to cover the requirements : high capacity of innovation and flexibility needed
- Composites integration concepts on-going

Humbert Vidal

Henkel provides innovative available solutions (products in the market) to the constant challenges accordingly the megatrends and new design / manufacturing concepts

