

TINTAS, BARNICES Y
RECUBRIMIENTOS EN BASE AGUA
PARA LA IMPRESIÓN SOSTENIBLE.
PREPARADOS PARA LA ECONOMÍA
CIRCULAR

WATER-BASED INK SOLUTIONS FOR SUSTAINABLE PRINTING INNOVATIONS. PREPARED FOR THE CIRCULAR ECONOMY

Laura Pomés Technical Manager

QUIMOVIL - PRESENTATION

EU GREEN DEAL

CARBON FOOT PRINT AND VOCs

INKS - FOUR SUSTAINABLE STRATEGIES



- Specialists in the design and manufacture of WATER-BASED flexographic printing inks, varnishes and coatings
- 60 years' experience
- Headquarters in Barcelona (Spain)
- Sales offices in Madrid and Valencia
- Presence in South America, Africa, Australia and Europe
- Flexible manufacturing system
- Own R&D Department
- SERVICES: Direct technical support, Consulting, Trainings, Strategic environmental services...

(+ 34) 93 729 19 44 www.quimovil.com quimovil@quimovil.com

www.linkedin.com/company/quimovil

GREEN DEAL – PACTO VERDE EUROPEO

https://audiovisual.ec.europa.eu/en/video/I-199819?&lg=EN/EN

Climate change and environmental degradation are an existential threat to Europe and the world. To overcome these challenges, the European Green Deal will transform the EU into a modern, resource-efficient and competitive economy, ensuring:

- no net emissions of greenhouse gases by 2050
- economic growth decoupled from resource use
- no person and no place left behind

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

CARBON FOOT PRINT – HUELLA DE CARBONO

Ministerio de Transición Ecológica de España:

La totalidad de gases de efecto invernadero (GEI) emitidos por efecto directo o indirecto por un individuo, organización, evento o producto.

GEI:

Dióxido de Carbono (CO₂)

Metano (CH₄)

Óxido nitroso (N₂O)

Hidrofluorocarbonos (HFCs)

Perfluorocarbonos (PFCs)

Hexafluoruro de azufre

Cómo se calcula:

- ✓ Consumo de combustibles fósiles
- ✓ Consumo eléctrico
- ✓ Fugas de equipos de climatización

https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/guia huella carbono tcm30-479093.pdf

CARBON FOOT PRINT – HUELLA DE CARBONO

PCG: Potencial de calentamiento global de los gases de efecto invernadero

Gas	PCG
Dióxido de Carbono (CO ₂)	1
Metano (CH ₄)	21
Óxido Nitroso (N ₂ O)	296
Fluorocarbonos (HFC)	120 – 12.000
Perfluorocarbonos (PFC)	5.700 – 11.900
Hexafluoruro de azufre	23.900

VOCS - CARBON FOOT PRINT - COVS- HUELLA DE CARBONO

COV: EMISIONES DE CO₂ INDIRECTO

"Los compuestos orgánicos volátiles (COV) son todos aquellos hidrocarburos que se presentan en estado gaseoso a la temperatura ambiente normal o que son muy volátiles a dicha temperatura. Se puede considerar como COV aquel compuesto orgánico que a 20°C tenga una presión de vapor de 0.01 kPa o más, o una volatilidad equivalente en las condiciones particulares de uso". RD 117/2003.

Por ejemplo: Acetato de etilo, acetato de propilo, alcohol etílico, alcohol isopropílico, etc.

Cómo se convierte el valor de COV en CO₂:

Emisión de CO₂=
Emisión de NMCOV * 0,60 * 44/12

https://www.miteco.gob.es/es/calidad-y-evaluacionambiental/temas/atmosfera-y-calidad-del-aire/emisiones/actemis/compuestos organicos volatiles.aspx

FOUR SUSTAINABLE INNOVATION STRATEGIES

1 WATER-BASED INKS

2 INKS MANUFACTURED WITH 100% RENEWABLE FEEDSTOCK

INKS PARTLY BASED ON BIO RENEWABLE RAW MATERIALS

A NEW OK-COMPOST INK SERIES

uimovil GRAPHICS INDUSTRY INKS Water-based inks experts

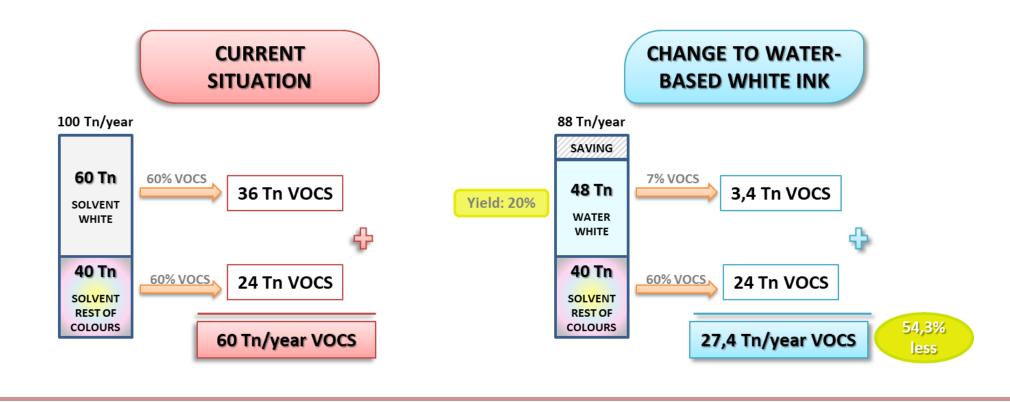
(surface and reverse print & lamination applications)

- Very low (or no) VOC content:
 - VOCs treatment is not necessary
 - Less solvent consumption
- Less volatile substances used in production increase safety both for workers and for the finished food packaging
- Non-flammable:
 - No special handling or storage requirements
 - No explosion proof equipment are necessary
- The same quality and performance as solvent-based inks
- More stable on press
- Higher yield
- Higher photopolymer plates useful life

REDUCTION OF:

- ✓ VOCs content
- ✓ Carbon footprint
- ✓ Fossil resources

For flexible packaging: #WePrethinkINK



(surface and reverse print & lamination applications)

*CASE STUDY: TOTAL VOCs EMISSIONS CALCULATION WITH ONLY THE CHANGE OF SOLVENT-BASED TO WATER-BASED WHITE INKS

(surface and reverse print & lamination applications)

TINTAS DE QUIMÓVIL

IMPRESIÓN REVERSO:

Lamin-Flex

IMPRESIÓN EXTERIOR:

Aquaplus

RA Aqua-Film

BBB Aqua-Film

ESPECIALIDADES:

Blanco Neutro-Flex

Heptacromía

Barnices OPV

Primers

Blancos cubrientes

Tintas metalizadas

Serie Soluflex

Serie Film-Quimo-Iris: OK COMPOST

(surface and reverse print & lamination applications)

FOOD SAFETY RISK ANALYSIS (Lamin-Flex series):

- ✓ **OVERALL MIGRATION,** according to UNE-EN 1186-4
- ✓ SPECIFIC MIGRATION OF PRIMARY AROMATIC AMINES (PAA), according to UNE-EN 13130-1
- ✓ **SCREENING OF COMPOUNDS,** on sample and on migration solution

POSITIVE RESULTS*

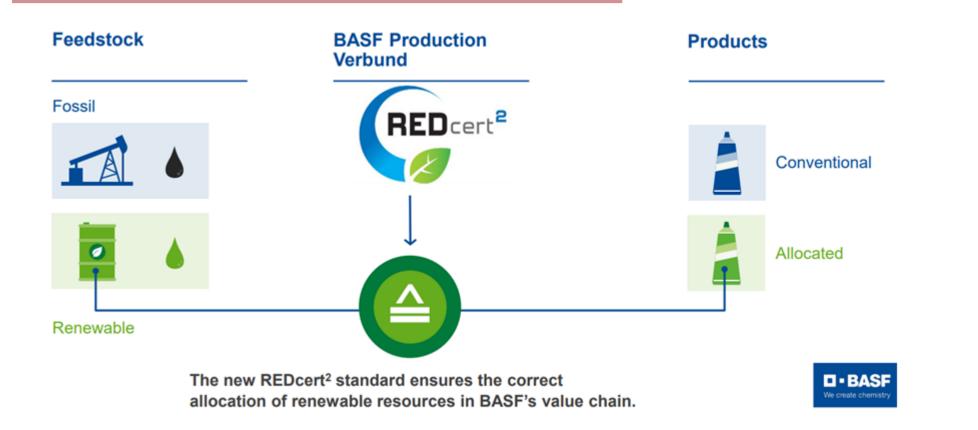
*According to Regulation (EU) N. 10/2011

(surface and reverse print & lamination applications)

INK CARBON FOOTPRINT (Lamin-Flex series):

- **✓ CARBON FOOTPRINT OF MATERIALS**
- ✓ CARBON FOOTPRINT OF MANUFACTURING PROCESS.
- ✓ CARBON FOOTPRINT OF WASTE VALORIZATION (IMPACT + CREDITS)

WATER-BASED INKS 25 - 35 %
LESS THAN SOLVENT-BASED INKS



PRINTING INKS FORMULATED WITH POLYMERS MANUFACTURED

WITH 100% RENEWABLE FEEDSTOCK FOR PRINTING ON

PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING

(100 % substitution of fossil with renewable raw materials)

Source: BASF «In every change lies a packaged chance»

PRINTING INKS FORMULATED WITH POLYMERS MANUFACTURED

WITH 100% RENEWABLE FEEDSTOCK FOR PRINTING ON

PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING

(100 % substitution of fossil with renewable raw materials)

*CASE STUDY: OVERPRINT VARNISH FOR PAPER

OPV producer purchasing 100 tons/year of standard fossil based varnish and replacing this volume by new renewable based varnish

	CO ₂ EMISSIONS (tons CO ₂)	CRUDE OIL CONSUMPTION (tons)
STANDARD fossil based varnish	~116	~58
NEW renewable based varnish	~6	0
SAVINGS (tons)	~110 (~95%)	~58 (100%)

REDUCTION OF:

- ✓ Carbon footprint
- √ Fossil resources

1100 tons CO₂ is similar to the savings of ~10500 solar panels**

**Solar panel info: In NL, 1 solar panel delivers ~225 kWh and saves ~103 kg CO₂ per year (0,46kg CO₂/kWh)

Source: BASF «In every change lies a packaged chance»

PRINTING INKS FORMULATED WITH POLYMERS PARTLY BASED ON BIO RENEWABLE RAW MATERIALS FOR PRINTING ON KRAFT PAPER AND CORRUGATED BOARD

- Water-based technology (with all its benefits)
- High content of renewable material (up to 50% on solids)
- Good press performance
- Excellent transfer and color strength
- Ink for a variety of printing and packaging applications: pre- and post-print, corrugated boards, folding cartons, labels, etc.

REDUCTION OF:

- ✓ Carbon footprint
- ✓ Fossil resources

SERIE QUIMO-IRIS:

WATER-BASED INKS FOR PRINTING ON COMPOSTABLE PAPER AND PLASTICS, CERTIFICATED BY TÜV AUSTRIA WITH THE OK COMPOST

INDUSTRIAL AND OK COMPOST HOME CONFORMITY MARKS

EN-13432 STANDARD

Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging

BIODEGRADABILITY

The amount of carbon dioxide release must be at least 90% as much carbon dioxide given off by a control sample within 6 months

DISINTEGRATION

At least 90% of material must pass through a 2mm sieve at the end of 12 weeks

CHEMICAL ANALYSIS

The 11 chemicals must be under the stated threshold concentrations shown in the EN 13432 standard (including Cu: blues and greens!)

ECOTOXICITY

The number of grown plants and the plant biomass of the sample should be no less than 90% of the blank sample


SERIE QUIMO-IRIS:

WATER-BASED INKS FOR PRINTING ON COMPOSTABLE PAPER AND PLASTICS, CERTIFICATED BY TÜV AUSTRIA WITH THE OK COMPOST

INDUSTRIAL AND OK COMPOST HOME CONFORMITY MARKS

SPECIAL CONDITIONS WITH INKS (constituent):

- The concentration of each component in the final packaging must be limited to 1% maximum (% of dry weight of the final product).
- The total concentration of the components used in the final packaging must be limited to 5% (% of dry weight of the final product).

CHEMICAL ANALYSIS

ECOTOXICITY



SERIE QUIMO-IRIS:

WATER-BASED INKS FOR PRINTING ON COMPOSTABLE PAPER AND PLASTICS, CERTIFICATED BY TÜV AUSTRIA WITH THE OK COMPOST INDUSTRIAL AND OK COMPOST HOME CONFORMITY MARKS

- Water-based technology (with all its benefits)
- Wide portfolio of certificated products
- Suitable for printing on compostable papers and plastics
- Same performance in press than conventional inks
- Excellent printability and resistance properties
- Excellent adhesion on non-absorbing substrates

REDUCTION OF:

- ✓ VOCs content
- ✓ Carbon footprint
- ✓ Fossil resources
- ✓ Waste

Different **SPREADSHEETS** as tools for helping and advising to our customers in:

- The calculation of the maximum printing surface of each ink (% of the final product)
- The calculation of the technical viability in a real printing work (with different inks)

Laura Pomés (lpr@quimovil.com)

www.quimovil.com

www.linkedin.com/company/quimovil

0034 93 729 19 44

