

"FFR	RMED TRAINS"
Longth	acteristics "FERRMED Trains"
Lengin	3600 t ÷ 5000 t
Axle load	22.5 t/axle ÷ 25 t/axle (future)
Track gauge	1435 mm
Loading gauge	UIC C
Maximum speed	120 km/h

									_	_	
Max	vim	um l	nad	the	at ca	n h		tari	had		
with cu	urrent		otives	LIIC			6 3	Lai	Gu		
with co	ment	100001110	111003	Dependi	ing on the sta	rting tract	ive effort	Dep	ending or	the adhe	sion
Locomotive type	Loco weight	Axle/load	Starting tractive effort	Slopes	Maxim um Ioad	Slopes	Maximu mload	Slopes	Max. load	Slopes	Max. load
USA: GE ES44AC	188 t	31,3 t	880 kN	4 ‰	11.036 t	12 ‰	5.424 t	4 ‰	7.567 t	12 ‰	3.690 t
Europe: Co-Co	125 t	20,8 t	400 kN	4‰	4.977 t	12 ‰	2.426 t	4‰	5.031 t	12 ‰	2.453 t
Europe: Bo-Bo	85 t	21,25 t	300 kN	4‰	3.741 t	12 ‰	1.828 t	4‰	3.421 t	12 ‰	1.668 t
				*Q ≤ [(Fs /9, Fs: starting t resistance o	.8 * 1000) / (rs + i tractive effort, i: s f the train)] – L lope, rs: start	ing	Q ≤ [(Fµ0 Fµ0=µ0 *	*1000)/(rs La; µ0=	+i)] – L 33%, La: adh	erent weight
■ Ar star	merican rt more t	locomotiv than 5.000	ves, with Ot in slop	a higher es of 12	starting t ‰.	ractive	effort th	an Euro	pean o	nes, ca	n
• St	tarting tr	active effe	orts of Eu	Jropean	locomotiv	es are	enough	to haul	"FERR	MED	14
or e	ven less	s dependi	ing on the	slopes.		emaxi	mumio		wertna	12.000	n e
е щ		Contraction of the second	ussio	h ALS	том 🕉	Faive	ley 5.a. 🚺	MERVICE SILLER ON ALEFTIC 22	paunisuns. A	Enginy Industrials de Ca	ers A [®]

Power	requi	ired to h	aul "FERRM	ED Trains" at defined speed				
Load	Slope	Speed	Power at wheel rim	Bower does not influence the				
		40 km/h	1.178 kW	FOWER does not innuence the maximum load that can be				
	0%	60 km/h	2.075 kW	have by the powerful locomotives				
	0700	100 km/h	5.093 kW	nauled but powerful locomotives				
		120 km/h	7.215 kW	allow higher speed and beller				
		40 km/h	2.800 kW	acceleration				
	40/	60 km/h	4.509 kW	 Required power increases with 				
	4‰	100 km/h	9.149 kW	the slopes and with the speed				
0.000.4		120 km/h	12.324 kW	Power of the train between				
3.600 t		40 km/h	6.045 kW	7.000 kW and 10.000 kW \rightarrow				
	1.0%	60 km/h	9.379 kW	nower or individual				
	12700	100 km/h	17.261 kW	locomotives: 3.500 kW –				
		120 km/h	22.058 kW	5.000kW				
		40 km/h	8.479 kW	0.000.000				
	1.99/	60 km/h	13.027 kW					
	18‰	100 km/h	23.346 kW					
		120 km/h	29.360 kW					
			sinh ALSTOM					

Other Environmental improvements

Energy efficiency:

- By operational measures:
- Optimizing routes, traffic flows and fleet performance
- By innovations in the rolling stock
- Driver assistance systems (DAS)
- Recovery energy brake
- Improve the performance of the traction system but also of the auxiliary equipment
- Aerodynamic design
- Devices that reduce the idle in diesel locomotives: AESS, APU,...

Noise : TSI CR Noise

- Acoustic insulation of the cabin
- New materials for the braking system
- Use of brake discs instead brake shoes
- New materials and new designs of bogies and wheels to reduce the impact of track irregularities
- Acoustic improvements in engines, compressors, brake, fans...
- Suspension technologies of the critical
- Aerodynamic design

Conclusions Locomoti	of FERRMED Freight ve Concept Study		
Jumber of motorized axles	12 axles		
Starting tractive effort of the train (12 ‰)	600 kN (3600t) ÷ 800 kN (5000t)		
Number of locomotives	More than one in multiple traction: 2 Co-Co or 3 Bo-Bo		
Power of the train	7.000 kW ÷ 10.000 kW		
Traction Characte	eristics FERRMED Freight Locomotive		
Starting tractive effort of the locomotive	300 kN ÷ 400 kN		
Axle arrangement	Co-Co or Bo-Bo		
Power of the locomotive	3.500 kW ÷ 5.000 kW		
Type of traction	Diesel locomotive or electric multi-tension locomotive		
Dentegrapha (for alectric lagos)	Two devices type C and two Type D		

Conclusions of FERRMED Freight Locomotive Concept Study

С	haracteristics FERRMED Freight Locomotive			
Multiple traction	YES, distributed multiple traction. Communications options: wire / radio			
Coupling	Automatic coupling compatible with current UIC screw couplers and Russian couplers			
Brake	E-ECP Brake System (Enhanced-Electronically controlled pneumatic system)			
Interoperability	YES. Fulfillment all applicable TSI and other European Directives			
Safety and Signaling system	ERTMS			
Train control system	ETCS			
Radio system	GSM-R			

Conclu Loc	sions of FERRMED Freight comotive Concept Study
Cab	2 cabs with central desk ensuring safety and comfort of the driver
Noise	TSI CR Noise
Exhaust Emissions	EU 2004/26 Stage IIIB
Others	Incorporation of state-of-the art technologies to improve energy efficiency
	Incorporation of state-of-the-art driving advice systems and operations assistance systems
Materials	About 95% recyclable materials
	vession ALSTOM 🌮 Faiveley 🛞 Martine at a state of the second