

azbil Telstar.

Trends in Containment I solation Technology

Progression in containment equipment over the decades

Legislation led to a rapid increase in the use of dust collectors in the early 1970s and isolators emerged from nuclear applications into pharma applications in the mid 1990's.

Why do we need containment?

There is an increased need for CONTAINMENT due to:-

- Greater drug potency
- Reduction on reliance of operator PPE and RPE
- Prevention of workplace contamination & avoidance of quality issues
- Implementation of new legislation for operator safety (e.g. COSHH & OSHA)
- A greater awareness through industry bodies & baseline guides developed by industry societies e.g. ISPE, PDA, etc.
- Plant upgrades driven by introduction of new products
- Avoidance of cross-contamination

Isolators now the most common Containment choice in the Pharma Industry

What is 1µg/m³?

Imagine 1/3rd of a single grain of sugar

Now, cut 1/1000th of that & place it in a $1m^3$ box \longrightarrow

That's 1µg/m³

Isolators are now regularly required to achieve operator exposure levels of <5ng/m³

That's 200 times lower

Where next? Increasingly tighter operator protection levels are continually being demanded.

Observed containment levels for Isolators over the last 25 years.

Creating new bandings is the easy element...

Current accepted bands...

Logical extension...

OEB Band	OEL Range (µg/m³)
OEB 1	1000 – 5000
OEB 2	100 – 1000
OEB 3	10 – 100
OEB 4	1 – 10
OEB 5	<1

OEB Band	OEL Range (µg/m³)
OEB 5	1 - 0.1
OEB 6	0.1 – 0.01
OEB 7	0.01 – 0.001
OEB 8	<0.001

Therefore OEB 8 at <1ng/m³ is effectively entering the picogram domain...

Containment Isolators in the future?

Interfaces, transitions & cleaning are the weakest elements and these aspects need careful consideration

Tony Rhodes & Paul Stewart Telstar Life Sciences

Thank you for your attention